- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources3
- Resource Type
-
0000000003000000
- More
- Availability
-
30
- Author / Contributor
- Filter by Author / Creator
-
-
Sachdeva, Vedant (3)
-
Palmer, Stephanie E. (2)
-
Falk, Martin J. (1)
-
Gardel, Margaret L. (1)
-
Humplik, Jan (1)
-
Matthews, Ayanna (1)
-
Mora, Thierry (1)
-
Murugan, Arvind (1)
-
Nagel, Sidney R. (1)
-
Ngampruetikorn, Vudtiwat (1)
-
Pashine, Nidhi (1)
-
Schwab, David J. (1)
-
Torrence, Johanna (1)
-
Walczak, Aleksandra M. (1)
-
Wu, Jiayi (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
- Filter by Editor
-
-
Faisal, Aldo A (1)
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Evolution in time-varying environments naturally leads to adaptable biological systems that can easily switch functionalities. Advances in the synthesis of environmentally responsive materials therefore open up the possibility of creating a wide range of synthetic materials which can also be trained for adaptability. We consider high-dimensional inverse problems for materials where any particular functionality can be realized by numerous equivalent choices of design parameters. By periodically switching targets in a given design algorithm, we can teach a material to perform incompatible functionalities with minimal changes in design parameters. We exhibit this learning strategy for adaptability in two simulated settings: elastic networks that are designed to switch deformation modes with minimal bond changes and heteropolymers whose folding pathway selections are controlled by a minimal set of monomer affinities. The resulting designs can reveal physical principles, such as nucleation-controlled folding, that enable such adaptability.more » « less
-
Ngampruetikorn, Vudtiwat; Sachdeva, Vedant; Torrence, Johanna; Humplik, Jan; Schwab, David J.; Palmer, Stephanie E. (, Physical Review Research)
-
Sachdeva, Vedant; Mora, Thierry; Walczak, Aleksandra M.; Palmer, Stephanie E. (, PLOS Computational Biology)Faisal, Aldo A (Ed.)Responding to stimuli requires that organisms encode information about the external world. Not all parts of the input are important for behavior, and resource limitations demand that signals be compressed. Prediction of the future input is widely beneficial in many biological systems. We compute the trade-offs between representing the past faithfully and predicting the future using the information bottleneck approach, for input dynamics with different levels of complexity. For motion prediction, we show that, depending on the parameters in the input dynamics, velocity or position information is more useful for accurate prediction. We show which motion representations are easiest to re-use for accurate prediction in other motion contexts, and identify and quantify those with the highest transferability. For non-Markovian dynamics, we explore the role of long-term memory in shaping the internal representation. Lastly, we show that prediction in evolutionary population dynamics is linked to clustering allele frequencies into non-overlapping memories.more » « less
An official website of the United States government
